RSS   Newsletter   Contact   Advertise with us

Ship exhaust makes oceanic thunderstorms more intense

Staff Writer | September 8, 2017
Thunderstorms directly above two of the world's busiest shipping lanes are significantly more powerful than storms in areas of the ocean where ships don't travel.
oceanic thunderstorm
Nature   Mapping lightning around the globe
A new study mapping lightning around the globe finds lightning strokes occur nearly twice as often directly above heavily-trafficked shipping lanes in the Indian Ocean and the South China Sea than they do in areas of the ocean adjacent to shipping lanes that have similar climates.

The difference in lightning activity can't be explained by changes in the weather, according to the study's authors, who conclude that aerosol particles emitted in ship exhaust are changing how storm clouds form over the ocean.

The new study is the first to show ship exhaust can alter thunderstorm intensity. The researchers conclude that particles from ship exhaust make cloud droplets smaller, lifting them higher in the atmosphere. This creates more ice particles and leads to more lightning.

The results provide some of the first evidence that humans are changing cloud formation on a nearly continual basis, rather than after a specific incident like a wildfire, according to the authors.

Cloud formation can affect rainfall patterns and alter climate by changing how much sunlight clouds reflect to space.

"It's one of the clearest examples of how humans are actually changing the intensity of storm processes on Earth through the emission of particulates from combustion," said Joel Thornton, an atmospheric scientist at the University of Washington in Seattle and lead author of the new study in Geophysical Research Letters, a journal of the American Geophysical Union.

"It is the first time we have, literally, a smoking gun, showing over pristine ocean areas that the lightning amount is more than doubling," said Daniel Rosenfeld, an atmospheric scientist at the Hebrew University of Jerusalem who was not connected to the study.

"The study shows, highly unambiguously, the relationship between anthropogenic emissions - in this case, from diesel engines - on deep convective clouds."

More than $5 trillion of world trade passes through the South China Sea every year and nearly 100,000 ships pass through the Strait of Malacca alone. Lightning is a measure of storm intensity, and the researchers detected the uptick in lightning at least as far back as 2005.

Water molecules need aerosols to condense into clouds. Where the atmosphere has few aerosol particles - over the ocean, for instance - water molecules have fewer particles to condense around, so cloud droplets are large.

When more aerosols are added to the air, like from ship exhaust, water molecules have more particles to collect around. More cloud droplets form, but they are smaller.

Being lighter, these smaller droplets travel higher into the atmosphere and more of them reach the freezing line, creating more ice, which creates more lightning.

Storm clouds become electrified when ice particles collide with each other and with unfrozen droplets in the cloud. Lightning is the atmosphere's way of neutralizing that built-up electric charge.

Ships burn dirtier fuels in the open ocean away from port, spewing more aerosols and creating even more lightning, Thornton said.


 

MORE INSIDE POST