RSS   Newsletter   Contact   Advertise with us

Lack of vitamin A at birth, plenty of Alzheimer's later

Share on Twitter Share on LinkedIn
Staff Writer |
Alzheimer
Biochemical reactions   Genetically-engineered mice

Biochemical reactions that cause Alzheimer's disease could begin in the womb or just after birth if the fetus or newborn does not get enough vitamin A, according to new research from the University of British Columbia.


These new findings, based on studies of genetically-engineered mice, also demonstrate that supplements given to newborns with low levels of vitamin A could be effective in slowing the degenerative brain disease.

"Our study clearly shows that marginal deficiency of vitamin A, even as early as in pregnancy, has a detrimental effect on brain development and has long-lasting effect that may facilitate Alzheimer's disease in later life," said Dr. Weihong Song, a professor of psychiatry and Canada Research Chair in Alzheimer's Disease.

For this research, Song built on previous studies that have linked low levels of vitamin A with cognitive impairments. In collaboration with Dr. Tingyu Li and others at Children's Hospital of Chongqing Medical University, they examined the effects of vitamin A deprivation in the womb and infancy on Alzheimer's model mice. These early developmental stages are crucial periods during which brain tissue is "programmed" for the rest of a person's life.

The researchers found that even a mild vitamin A deficiency increased the production of amyloid beta, the protein that forms plaques that smother and ultimately kill neurons in Alzheimer's disease. He also found that these mice, when deprived of vitamin A, performed worse as adults on a standard test of learning and memory.

Even when the mice deprived of vitamin A in the womb were given a normal diet as pups, they performed worse than mice who received a normal amount of the nutrient in the womb but were deprived after birth. In other words, the damage had already been done in the womb.

Still, Song and his collaborators also showed that some reversal is possible: Mice who were deprived in utero but then given supplements immediately after birth performed better on the tests than mice who weren't given such supplements.

POST Online Media Contact