RSS   Newsletter   Contact   Advertise with us
Post Online Media
Climate   Dust in rocks confirmed

Westerly winds have blown across Central Asia for 42 million years

Alexis LichtThe gusting westerly winds that dominate the climate in central Asia, setting the pattern of dryness and location of central Asian deserts, have blown mostly unchanged for 42 million years.

A University of Washington geologist led a team that has discovered a surprising resilience to one of the world's dominant weather systems. The finding could help long-term climate forecasts, since it suggests these winds are likely to persist through radical climate shifts.

READ MORE Antarctica stealing Australia's rain

"So far, the most common way we had to reconstruct past wind patterns was using climate simulations, which are less accurate when you go far back in Earth's history," said Alexis Licht, a UW assistant professor of Earth and space sciences who is lead author of the paper published in August in Nature Communications.

"Our study is one of the first to provide geological constraints on the wind patterns in deep time."

Earlier studies of the Asian climate's history used rocks from the Loess Plateau in northwestern China to show dust accumulation began 25 million to 22 million years ago and increased over time, especially over the past 3 million years.

It had been believed that these rocks reflected the full history of central Asian deserts, linking them with the rise of the Tibetan Plateau and a planetwide cooling.

But Licht led previous research at the University of Arizona using much older rocks, dating back more than 40 million years, from northeastern Tibet.

Dust in those rocks confirmed the region already was already parched during the Eocene epoch. This upended previous beliefs that the region's climate at that time was more subtropical, with regional wind patterns brought more moisture from the tropics.

The new paper traces the origin of this central Asian dust using samples from the area around Xining, the largest city at the northeastern corner of the Tibetan Plateau. Chemical analyses show that the dust came from areas in western China and along the northern edge of the Tibetan Plateau, like today, and was carried by the same westerly winds.

"The origin of the dust hasn't changed for the last 42 million years," Licht said.

During the Eocene, the Tibetan Plateau and Himalayan Mountains were much lower, temperatures were hot, new mammal species were rapidly emerging, and Earth's atmosphere contained three to four times more carbon dioxide than it does today.

"Neither Tibetan uplift nor the decrease in atmospheric carbon dioxide concentration since the Eocene seem to have changed the atmospheric pattern in central Asia," Licht said.

"Wind patterns are influenced by changes in the Earth's orbit over tens or hundreds of thousands of years, but over millions of years these wind patterns are very resilient."

The study could help predict how climates and ecosystems might shift in the future.

"If we want to have an idea of the Earth's climate in 100 or 200 years, the Eocene is one of the best analogs, because it's the last period when we had very high atmospheric carbon dioxide," Licht said.




What to read next





More inside POST
 
 

We use cookies to ensure that we give you the best experience on our website. Please allow cookies for fully-functioning website.

Allow Cookies Privacy Policy