RSS   Newsletter   Contact   Advertise with us
Post Online Media
Life in space   Our planet formed just 4.5 billion years ago

Life on Earth is premature from a cosmic perspective

EarthThe universe is 13.8 billion years old, while our planet formed just 4.5 billion years ago. A new theoretical work suggests that present-day life is actually premature from a cosmic perspective.

"If you ask, 'When is life most likely to emerge?' you might naively say, 'Now,'" says lead author Avi Loeb of the Harvard-Smithsonian Center for Astrophysics. "But we find that the chance of life grows much higher in the distant future."

READ MORE Cosmic-ray detector finds possible crack in Earth's magnetic shield

Life as we know it first became possible about 30 million years after the Big Bang, when the first stars seeded the cosmos with the necessary elements like carbon and oxygen.

Life will end 10 trillion years from now when the last stars fade away and die. Loeb and his colleagues considered the relative likelihood of life between those two boundaries.

The dominant factor proved to be the lifetimes of stars. The higher a star's mass, the shorter its lifetime. Stars larger than about three times the sun's mass will expire before life has a chance to evolve.

Conversely, the smallest stars weigh less than 10 percent as much as the Sun. They will glow for 10 trillion years, giving life ample time to emerge on any planets they host. As a result, the probability of life grows over time. In fact, chances of life are 1000 times higher in the distant future than now.

"So then you may ask, why aren't we living in the future next to a low-mass star?" says Loeb.

"One possibility is we're premature. Another possibility is that the environment around a low-mass star is hazardous to life."

Although low-mass, red dwarf stars live for a long time, they also pose unique threats. In their youth they emit strong flares and ultraviolet radiation that could strip the atmosphere from any rocky world in the habitable zone.

To determine which possibility is correct - our premature existence or the hazard of low-mass stars - Loeb recommends studying nearby red dwarf stars and their planets for signs of habitability.

Future space missions like the Transiting Exoplanet Survey Satellite and James Webb Space Telescope should help to answer these questions.




What to read next





More inside POST
 
 

We use cookies to ensure that we give you the best experience on our website. Please allow cookies for fully-functioning website.

Allow Cookies Privacy Policy